CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii.

نویسندگان

  • Ryutaro Tokutsu
  • Masakazu Iwai
  • Jun Minagawa
چکیده

In oxygen-evolving photosynthesis, the two photosystems, photosystem I (PSI) and photosystem II (PSII), function in parallel, and their excitation levels must be balanced to maintain an optimal photosynthetic rate under various light conditions. State transitions balance excitation energy between the two photosystems by redistributing light-harvesting complex II (LHCII) proteins. Here we describe two RNA interference (RNAi) mutants of the green alga Chlamydomonas reinhardtii with one of the minor monomeric LHCII proteins, CP29 or CP26, knocked down. These two proteins have been identified in PSI-LHCI supercomplexes that harbor mobile LHCII proteins from PSII under a state where PSII is preferentially excited (State 2). We show that both the CP29 and CP26 RNAi mutants undergo reductions in the PSII antenna size during a transition from State 1 (a state where PSI is preferentially excited) to State 2, as reflected by nonphotochemical quenching of fluorescence, low temperature fluorescence spectra, and functional absorption cross-section. However, the undocked LHCIIs from PSII do not re-associate with PSI in the CP29-RNAi (b4i) mutant because the antenna size of PSI was not complementary increased. The mobile LHCIIs in the CP26-RNAi (b5i) mutant, however, re-associate with PSI, whose PSI-LHCI/II supercomplex is visualized on a sucrose density gradient. This study clarifies that CP29, not CP26, is an essential component in state transitions and demonstrates that CP29 is crucial when mobile LHCIIs re-associate with PSI under State 2 conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii.

State transition in photosynthesis is a short-term balancing mechanism of energy distribution between photosystem I (PSI) and photosystem II (PSII). When PSII is preferentially excited (state 2), a pool of mobile light-harvesting complex II (LHCII) antenna proteins is thought to migrate from PSII to PSI, but biochemical evidence for a physical association between LHCII proteins and PSI in state...

متن کامل

Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii.

State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociatio...

متن کامل

Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii.

Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four d...

متن کامل

LHCSR3 affects de-coupling and re-coupling of LHCII to PSII during state transitions in Chlamydomonas reinhardtii

Photosynthetic organisms have to tolerate rapid changes in light intensity, which is facilitated by non-photochemical quenching (NPQ) and involves modification of energy transfer from light-harvesting complexes (LHC) to the photosystem reaction centres. NPQ includes dissipating excess light energy to heat (qE) and the reversible coupling of LHCII to photosystems (state transitions/qT), which ar...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 12  شماره 

صفحات  -

تاریخ انتشار 2009